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1 INEQUALITIES CONNECTING EIGENVALUES AND NONPRINCIPAL SUBDETERMINANTS
Marvin Marcus Ivan Filippenko
Institute for the Interdisciplinary Ingtitute for the Interdisciplinary
Applications of Algebra and Applications of Algebra and
Combinatorics Combinatorics
University of California University of California
Santa Barbara, California 93106 Santa Barbara, California 93106
U.S.A. U.S.A.
! ABSTRACT. The nonprincipal subdeterminants of a normal i

matrix satisfy certain quadratic identities. In this 1
paper, these identities are used to obtain upper bounds
on such subdeterminants in terms of elementary symmetric
functions of the moduli of the eigenvalues. The same
analysis ylelds lower bounds on the spread of a normal
matrix and on the Hilbert norm of an arbitrary matrix.

1. STATEMENT OF RESULTS
Let )‘l"" ’)‘n be n complex numbers. The totality of n-square normal

matrices with these numbers as eigenvalues is the set of all matrices A of
the form

| . :
{ (1) A=v"py,

where U ig unitary and D = diag()\l,...,)\n). It is well known (1, p. 237]
that for a fixed integer m, lgm<gn, the totality wm(x) of m-square
principal subdeterminants of all A defined by (1) is a region in the plane
bl T LT e e contained in the convex polygon

e : (2) P = u[)‘w(l) t Ng(myr Y€ Q\n,n} :

e The notation in (2) 1s this: Q, , 1s the set of all (:) integer sequences
R ’

1 . N w having domain {1,...,m} and range contained in ({1,...,n}, and satis-

E R ' fying w(l) < w(2) € -+ < w(m); M denotes the convex hull of the indicated

.

products. Thus

The work of the first author was supported by the Air Force Office of Scienti-
fic Research under Grant AFOSR 4962098-C-0030.
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or in words, if A 4is a normal matrix with eigenvalues npseeean
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(3) W (N c B M),

Vhanss wasy

n
m-square principal subdeterminant of A 1lies in the polygon Pm(‘r\). It is

also known that in contrast to the case m =1 when W, (M) is the numerical
range of an* A, it is not generally the case for l<m«<n -1 that wm(k)
is a convex set [A4].

The situation for m-square nonprincipal subdeterminants is remarkably
different. To fix the notation, let Xk,m be fixed integers, l< k< m<n,
and let wk,m()\) denote the totality of m-square subdeterminants of the'
matrices A in (1 which have precisely k main-diagonal elements in common
with A. More precisely,

%) wk,m(x) = {det Ala|8] a,B8eQy s lima 0 in8| =k, A defined by (1)},

where im @ 1is the range of « and A[a]B] is the m-square submatrix of
A 1lying in rows ofl),...,a{m) and columns p{1),...,8(m) of A. A slight
modification of an argument found in {3, p. 220] shows that L m(?\) is a

H]
closed circular disc centered at the origin. Let T l“()\) denote the radius
¢4

of this disc. Also let
E (M) = E (M- nin D)
denote the m-th elementary symmetric polynomial in h\li saee ,P\n‘ , i.e.,

m
= Z 0 .
=) weQy . 1=1 Pyl

The following is the main result of this paper.
THEOREM 1. If n>h, m» 2, and k<m- 2, then

2(m - k + 1)rk’m(}\) if k<m-2,

S

A
(5) E(IMD) 2 ey () i kem-2.

In words, let A be & normal matrix with eigenvalues kl""’)‘n' n>kL.
Let B be an me-square submatrix of A having precisely k main~-diagonal
entries lying on the main diagonal of A. If k< m -2, then

AIR FORCE OFFICE OF SCIENTIFIC RESEAR
NOTICE OF TRANSMITTAL TO DDC % (ars)
This technical report has been revieved and is

approved for public release IAW AFR
Distribution is unlimited, 190-12 (7b).
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B (IAD
Mm-x+1) I E<m-2,
(6) |det B| <
E,(IA])
I if k=m-2.

Recall that the spread of A [5, 6] is the number

s(A) = max [N, -2 .
g + 09

We have the following result.

COROLLARY 1. 1f 2<m<n and the m-square submatrix B of A has
no main-~diagonal elements lying on the main diagonal of A, then

75(eta + (=) et 31,

(7 s(A) > max
2J6(n(n - 1))'1/2 |aet B|1/2 .

In the following corollary, A 4s an arbitrary n-square matrix (n>2).
Let 4 be the greatest m-square subdeterminant of A (in absolute value),

and let "A" be the Hilbert norm of A, 1i.e., the greatest singular value
of A.

COROLLARY 2. If 2<m<n, then
-I\1/m
(2(m + 1)(":) ) 'di/"‘ ,
lIA] 2 max

/2 12

2(n(2n -1))™7*= 4
The remainder of the paper is divided into two sections. In Section 2,
a combinatorial lemma about sets of sequences is established to be used laler
in analyzing some consequences of the quadratic Plucker relations for sub-
determinants. In Section 3, the proofs of the above results are given.

2. A COMBINATORIAL LEMMA
Let I‘m a denote the set of all n® integer sequences with domain
»
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{1,...,m} and range {1,...,n}. Let a,B ¢ L (L<m<n), :ndlet
’
s,t ¢ {1,...,m}. Define ofs,t:8] to be the sequence in I‘m p Obtained
»
from « by replacing ofs) with B(t):

ofs,t :8] = (a1),...,0(s-1),8(t),x(s+1),...,0(m)) .

Similarly, B[t,s :a] denotes the sequence in rm p Obtained from 5 by
L i
replacing B(t) with ofs):

Blt,s :a] = (B(1),...,8(t-1),a(s),8(t+1),...,B(m)) .

As s and t vary over the set {1,...,m}, they give rise to the
following two lists of sequences in I‘m :

,n
ofs,t : 8] 1dst Blt,s : ] 1ist
af1,1:8] 81,1 :a]]
Block s =1
all,m:p] i{m,1: a]j
| afs,1 : B) B(1,s : a}
General Block s
ofs,m: 8] Blm,s : a]
alm,1 : 8] Bl1,m:a])
Block s = m : : L
afm,n : ] Blmm:al )

We shall refer to this array of sequences as "the twin lists.” As indicated,
the twin lists are arranged in m "blocks" (corresponding to s = 1,...,m);
each block has two columns (corresponding to a and B), each of which con-
sists of m sequences (corresponding to t = 1,...,m).

If 7 ¢ rm’ n® “e shall say that 7> appears in the twin lists if the
sequence 70 appears in the array for some permutation o ¢ sm.
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LEMMA. Suppose 2< m<n, and consider the seguences

as=(1,2,...,m) € Qm’n
and

B = (1,...,k,m+l,...,2m-K) ¢ Q\n n’

’
where 0<k<gh - 1.
(1) If k=m-1, then o and B appear in every block in the twin
lists for a and B.
(44) If k<m -2, then
(a) in each of blocks s = 1,...,k in the twin lists, both «
and B appear;
(b) in each of blocks s = k+l,...,m in the twin lists, neither
@ nor B appears in rows k+l,...,m;
(c) in each of blocks s = k+l,...,m in the twin lists, each of
the first k sequences on the left involves repeated integers;

(d) in the totality of rows k+l,...,m in blocks s = k+l,...,m
in the twin lists, no sequence appears more than once if

k<m -2, and the sequences which appear do so exactly
twice if k=m - 2.

Proof. As an introduction, let us write cut the general block in the
twin lists for a and B:

afs,t : 8] B(t,s : aj
/(l,...,s-l,l,s+1,...,m) (8,2,...,k,m+1,...,2m-k)
\ (1,...,8-1,2,841,...,m) (1,8,...,k,m+l,...,2m=k)
Block s 2(1,...,s-l,k,s+l,...,m) {(1,2,...,8,mt1,...,2m=k)

(1csgm)  {(1,...,8-1,m+1,8+1,...,m) (1,2,.0,Ky8,.00,2meK)

(1,...,8-1,2m-K,8+1,...,m) (1,2,...,k,m+l,...,8)

(1) Suppose k =m - 1. Observe that if s<m - 1, then block s 1in
the twin lists for o and £ has the form:

e et e T TS TSR o NPT AN SN P UIT BXP I - £ o L e M ot~ AP Oy . 12 R o s w e
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(1,¢0058-1,1,8+1,...,m) (8,25, m-1,m+l)

. .
v .
. .

(1,...,8-1,s,541,...,m) (1,2,.0055,00.,m=1,m+1)

(1,...y8-1,m-1,541,...,m) (1,2,...,5,m+1)

(1,...,5-1,m+1,8+1,...,m) (1,2,...,m-1,8) .

(Notice that since k=m ~ 1, we have £ = (1,...,m-l,m+l).) Thus «
appears as the s-th sequence on the left, and B appears as the s-th
sequence on the right. Now block s = m in the twin lists for o and B
has the form:

(1,v..,m-1,1) (m,2,...,m=1,m+1)
(1,...,m-1,2) (1,my...,m-1,m+1)
(1,...,m-1,m-1) (1,2,...,m,m+l)

(1,...,m=1,m+l) (1,2,...,m-1,m) ,

and we see that « appears as the m-th sequence on the right, while B
appears as the m-th sequence on the left. This establishes (i).

(i1) Suppose k< m - 2.

(a) If s e {1,...,k}, an inspection of block s in the twin
lists immediately shows that «a appears &s the s-th sequence on the left,
and B appears as the s-th sequence on the right.

(b) Let s ¢ {k+l,...,m}. Then block s in the twin lists for
a and 8 has the form:

posit%on 8
(Lyeeskyneesly.e.,m) (8yese k,mtl, ... ,2m-k)

(1,...,k,:..,k,...,n) (1,...,s,|n+1;...,2n-k)

(8)
(13000 skyere,mtd,,..,m) (1,...,k,8,m42,...,,2m-k)
rovs (Lyeeeskyene ms2,...,m) (1yeee X,mt, 8,0 . ,20-k)
ktl,...,m . .

(1,000 ,Kyene2meKy...,m) (1,0ne kml,enes8)
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Observe that each sequen:e in rows k+l,...,m in block s involves integers
greater than m. Thus & does not appear in rows k+l,...,m in block s.
Next, the (k+tl)-st sequence on the right in block s does not involve

m+ 1,. the (k+2)-nd sequence does not involve m + 2, and so on until
finally the m-th sequence does not involve 2m~X. Thus B8 does not appear
on the right in.rows k+l,...,m in block s. Now if s <m - 1, then every
sequence on the left in rows k+l,...,m in block s involves m, and hence
8 does not appear on the left in these rows. If s = m, then rows
k+l,...,m in block s have left-hand side of the form

(1,...,k,k+1,...,m=1,n 1)

(1,...,k,k+l, ... ,m-1,m+2)

.

(1,...,kk¢1,...,m-1,2m-k) ,

and each of these sequences involves k + 1. But £ does not involve k + 1
since k<m -2, so0again B does not appear on the left in rows
k+l,...,m in block s. This completes the proof of (b).

{e) It is clear from the array (8) in the proof of (b) that if
s ¢ {k+l,...,m}, then each of the first k sequences on the left in block
s 1involves repeated integers.

(d) Let us examine the array (8) in the proof of (b) both for a fixed s
and for different values of 8 e {k+l,...,m}.

First, it is obvious that for a fixed s ¢ {k+l,...,m}, the sequences
on the left in block s are all distinct, as are the sequences on the right.

Next, let s,s' ¢ {k+l,...,m}, s # 8', and observe that s does not
occur in any sequence on the left in block s, whereas s does occur in
every sequence on the left in block s'. Thus no sequence on the left in
block s' appears on the left in block s. It follows from the preceding
paragraph that in the .total:lty of blocks 8 = k+l,...,m in the twin lists,
no sequence appears more than once on tie left.

Again, let s,s' ¢ {k+l,...,m}, 3 # 8', and observe that s occurs in
every sequence on the right in block s, whereas s does not occur in any
sequence on the right in block s'. Thus no sequence on the right in block
8' appears on the right in block s. As before, it follows that in the

totality of blocks § = k+l,...,m in the twin lists, no sequence appears more

N —
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than once on the right.

If s ¢ {k+l,...,m-1}, then each sequence on the left iu block s
involves m and hence does not appear on the right in block s' for any
s' ¢ {k+1,...,m-1}. Also, each sequence on the right in block s =m
involves m and hence does not appear on the left in block m.

Now suppose k< m - 2. We wish to show that in the totality of rows
k+l,...,m in blocks s = k+l,...,m in the twin lists, no sequence appears
more than once. By the above cbservations, we need verify only that no
sequence on the left in rows k+l,...,m in blocks s = k+l,...,m=l appears
on the right in rows k+l,...,m in block m, and that no sequence on the
left in rows k+l,...,m in block m appears on the right in rows
k+l,...,m in blocks s§ = k+l,...,m-1. We reproduce the twin lists for «
and pB, omitting blocks 1,...,k and rows 1l,...,k in each of the blocks

s = k+l,...,m:

Block s, (1,...5k,...,m+L, ... ,m-1,m) (1,.0.,k,8,m42,...,20-k)

ktl<sgm-2; . .

t=ktl,...,m . .
(1,...,Ky00.,2mk,...,m-1,m} (1,000 k,m+l,m+2,...,s)

(1,...,k,... m=2,m+1,m) (1,...,k,m=1,m+2,...,2m-k)

Block s=m-1; .
t=k+l,...,m

(1,000 Ky .. ,m-2,2m-k,m) (1,...,k,m+l,m+2,...,m-1)

(1,...,ky...,m~2,m-1,m+l) (1,...,k,m,m+2,...,2m-k)

Block s=m; . .

t=kilyeeesm () k... ,me2,m1,2m k) (1,000 komél,mé2, .. 0sm) .

Inspection of this array shows that each sequence on the left in rows
k+l,...,m in blocks s = k+tl,...,m-2 involves m « 1 and hence does not
appear on the right in block m; each sequence on the left in rows
k+l,...,m in block m - 1 involves m - 2 and hence does not appear on
the right in block m (since k<m - 2); each sequence on the left 1n.rows
k+l,...,m 1in block m involves m - 1 and hence does not appear on the
right in rows k+l,...,m in blocks s = k+l,...,m-2; each sequence on the
left in rows k+l,...,m in block m involves m - 2 and hence does not
appear on the right in rows k+l,...,m in block m - L. This completes the
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required verification and establishes the assertion in (d) for the case

! . k<m -2,
. Aaoid PR Finally, suppose k =m = 2. Then if we consider the totality of rows
! m-1(=k+1),m in blocks s =m=-1,m in the twin lists for o and B,

; Block s = m-l; (1,...,m-2,m+1,m) (1,...,m-2,m-1,m+2)
‘ - ’ . t=m-1,m
(1,...,m-2,m+2,m) (1,...,m-2,m+l,m-1)
! . - . Block s =m (1,...,m=2,m=1,m+1) (1,...,m-2,m,m+2)
t=m-1l,m
L(l: oo ym=2 )m‘l:m+2) (l’ veesl-2,m+l,m) ,

A TR T o

we see immediately that every sequence which appears does so exactly twice.
This establishes the assertion in (d) for the case k=m -2. 0O

3. PROOFS
Proof of Theorem 1. We shall prove the equivalent statement that if

{ Ue un(c) is any unitary matrix, then
. : SRR Em([)\ll,...,l)\nl)

P CER TRV if k<m-2,

laet(u"av)(alBl] <
e (n]n D) 42 k=m-2.

We begin by making the following two reductions. First, we may assume that

r A 1is diagonal,
3
'i A= diag()\l,...,?\n) .

. Second, by effecting an appropriate permutation similarity transformation on
. . the matrix U*AU, We may assume

a=(1,2,...,m) and B =(1,...,k,m+tl,...,2m-k) .

Fix a matrix U e Un(C), and let

o = [aet(UAU)(afpl] = lcm(u*w)a’et ,

where cm(x) is the m-th compound matrix [1, p. 127]. For each v e Q .,
3
let
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{ B (7) = det U[v]7] 7eTy -
E , We have
! *
c (v AU)a,B = z ¢, (v )a’v cm(A)v,u cm(u)u,B

2 det Ulv[al det A[v|v] det U[v|B]
veQm’n

| o TR ARe)
IR Vel

where }\V = }‘v(l) )\v(m)' Therefore,

(9) Lo T P lp@llp ) .
veQ
e S o s m,n
Now the quadratic Plucker relations [2, p. 10] imply that for each v ¢ Q’n n
s

and any s ¢ {1,...,m},

m
e (10) p(@)p (8) = Zl p(als,t :8]) p (B(t,s:0]) .
S t=

Taking absolute values in (10), applying the triangle inequality, and summing
both sides on s = k+l,...,m, we cbtain, for each v € Qm o’
s 3

m m
(1) e @llp (o) < o Zk‘ﬂ tZl Ip,(als,t : 8D |p (Blt,s zal)| .
s= =

Combining (9) and (1l1) yields

m m
sty T bJ{ T I Infals,t:aDlIn (slt,s :aDlf,
Veo‘m,n s=k+l t=1

and it follows from part (ii)(c) of the lemma in Section 2 and the arithmetic-

. C . . geometric mean inequality that
1 n n .
: a5 T Nl { z L Ip(als,t :8])]{p (8lt,s :a])}
b e : veQ s=k+l t=k+l
A e m e e vt e (12) m,n
. ,‘ ] S5m0 ml.k z |{ > z Ipv(a[s,hsl)la'rlp(B[t.s:al)lz}-
B veQm V' Ug=k+l  tak+d v
LTI . M ,n
. . s Let us denote the double summation inside the brackets in the second inequality
' e e . R P A 12) b .
PSR in (12) by {Zs»t}

Since U 1is a unitary matrix, so is the m-th compound Cm(U). Hence
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for each v ¢ Q‘m 0’ the sum of the squares of the moduli of the elements

3
o (w), we Qe inrow v of C(U) is 1. It follows fram parts (ii)
v > m

B

(v), (d) of the lemma that

(13) {S'Z?t} + |pv(oz)|2 + lpv(B)|2§l if k<m-2,
(1t) %{Et} + Ipv(a)la + lpv(e)l2 <1 if k=m-2.

The remainder of the argument consists of a calculation performed in two cases.
Case 1: k< m -2, From (12) and (13) we conclude that

X e B N SR YOI EYOTY

Iy

Erml—ky [ Z - Z val(lpv<a)|2+ |pv(a)|2)]

vEQm,n %Qm,n

1
T < 5tacw [veoi nval -2 v€Q§ n‘N""v(“)‘ |p\,(e)|]
T . A
o <m-x veijnl)\vl-m'k

Therefore

{vy (9)) .

A 1
S-S cramyy| “an s
’

so that
: e N 5 I =Em(|?\1|,...,|7\n|)
=2m-k+ 1) " v 2(m - k + 1)
vQ\n,n
~ Case II: k=m - 2. From (12) (with k =m - 2) and (14) we conclude
that

: act T I 21 - (e (@) + |p ()]
-._-._.-- ——- . o e e - \’EQm’n I V' v I l v

i

ST [z g2 i dn@® - a6
LTI, ': *"“ .- veQm,n “Qm,n
oo <-l-l Z Ial-2 Z | p(a)Hp(B)l]
- =2 "eom,nl \:l VeQm,n' v“ v v
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1 >2 ;
<3 - (vy (9)) .
Ve
,n
Therefore
2A<% Z Ial,
- v

Vel n

so that ’

1 1
A< DR PN T - N PO b N B
E\’eg‘m,n o = FEUN !

¥*
Since A = |det(U AU)[c|p]|, this completes the proof of the theorem. O

Proof of Corollary 1. Assume first that 2<m<n, and let B ¢ Qm n
,

be sequences such that
imaNimp =, sothat B =Alals] .

Foreny teC, A-tI ¢ Mn( C) is a normal matrix with eigenvalues
Ny -ty ~t, and since imanNimp = ¢ we have

(4 - t1))lalp] = Alalp] .
It follows by Theorem 1 that
Jaet Alalpl| = |aet(A - tI )(alp]]

n \
E (I -tl,. o [n -t]) (m)(_ls'”‘;"‘sn Iy - t')
< 2w+ 1) < Hm + 1) g

Since this is true for each % ¢ C, we have
m m
n (min 1€1€ I~y 'tl)
te€C l<i<n
(15) et Alalpl] < Sat 1) .

Now it is known {5) that any n points Ase--sh; in € are contained in a

disc of radius

wax I -AJI
1<, J<n . s(A)
3 3

If to is the center of this disk, then certainly
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max  |A -tlsw ,
J3

1<ign + °
and hence
(16) min  max |A -t < 54)
tet 1l<ign NE)

The inequalities (15) and (16) together imply that
( n) (sSA!)m

m
laet atals]] < —gal gy »

1/m

s() 243 (g"—“—;—ll> laet Atale}| M/ .
(a)

Since the sequences Q,B ¢ Qm n vere arbitrarily chosen subject to the condi-

tion imanNim B = §, we conclude that

1
s(A) 243 [gmf‘ll] P ax et atalol M
(m) a’BEQm,n

imanimp=p
vwhenever 2< m< n, and the inequality for the first expression on the
right in (7) is established.
The proof of the inequality for the second expression on the right in
(7) 4s virtually identical, the sole modification being that the application
of Theorem 1l involves the case m = 2 rather than m > 2; this has the
effect of replacing the constant 2(m + 1) by 4 throughout. O

whence

Note that if A is hermitian (or skew hermitian), it is clear that

() min mx [N -t = 5-(5-2 .

teC lgi<n
Using (17) in place of (16) in the proofs of (7), we obtain the following
specialization of Corollary 1.

If A 1s hermitian or skew hermitian and the m-gquare submatrix B of
A has no main-diagonal elements lying on the main diagonal of A, then

(18) s(A) > 2(2(m + 1)(:)-1)1/m |det Bll/m, 2<m<n,
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and
(15) 5(8) 2 bJB (n(n ~ 1) Y2 |aet 3|22 |

Proof of Corollary 2. The matrix

A= Joeaoaoo € Man( c)
is hermitian with eigenvalues tal, oo ,tan, where
a = A 202 2 20

are the singular values of A. Applying the inequality (18) to Z, we see
that if 2<m<n then

1
s(R) > 2[2 n('z;:)l ] /o max |det E[ﬂu]ll/m
m 7’meQ‘m,Zn
im7y ﬂimw=¢
1
.
(m) CY’Beq‘m,n

Since s{&) = 20‘1’ the inequality for the first expression on the right in
Corollary 2 follows. 1In the same way, application of (19) to A yields the
inequality for the second expression on the right in Corollary 2. O
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